
Chapter 8: Tree Based Methods

 Tree based methods can be used for regression or classification.
 These methods depend on dividing the predictor space into regions

following a decision tree.
 Basic trees are used as building blocks for more powerful methods

like bagging, random forests, and boosting.

Regression Trees

 The regression trees creates nodes which satisfy a single condition,
e.g. Xj<tk.

 The terminal nodes of the tree are called leaves.
 In the next few examples the salary of major league baseball

players is predicted based on a number of predictor variables for
each player, like # of hits, years in the league, # of walks and so
on.

Regression Trees

This tree can be interpreted as
indicating that years is the most important
factor in determining salary.

For new players hits has little impact on
their salary but for more experienced
players the number of hits becomes
important.

Regression Trees

The previous regression tree with
three terminal nodes divides the
predictor space of Hits and Years
into three regions

Regression Trees

 Building the regression tree involves dividing the predictor space
into J, distinct non-overlapping regions, R1, …, Rj.

 Every observation in a region Rj, is assigned the mean of all the
training observations that fell in the region.

 More formally the goal is to find regions that minimize the RSS of
∑𝑗𝑗=1
𝐽𝐽 ∑𝑖𝑖∈𝑅𝑅𝑗𝑗 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑅𝑅𝑗𝑗

2

 We can’t look at all possible regions.
 Use recursive binary splitting.
 Starting at the top of the tree each split is based on the greatest

reduction in RSS at that step, without looking ahead.

Regression Trees: recursive binary splitting

 For instance, at the first node we look at cutpoint, s, for predictor-j
that divide the observations into two regions, {X|Xj<s} and {X|Xj
≥s

 Then we seek values of j and s that minimize,
∑𝑖𝑖: 𝑥𝑥𝑖𝑖∈𝑅𝑅1(𝑗𝑗,𝑠𝑠) 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑅𝑅1

2 + ∑𝑖𝑖: 𝑥𝑥𝑖𝑖∈𝑅𝑅2(𝑗𝑗,𝑠𝑠) 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑅𝑅2
2

where �𝑦𝑦𝑅𝑅1is the mean of the training observations in region 𝑅𝑅1(𝑗𝑗, 𝑠𝑠)
and �𝑦𝑦𝑅𝑅2 is the mean of the training observations in region 𝑅𝑅2(𝑗𝑗, 𝑠𝑠).

 Next the process looks for splits at each of the two newly created
regions choosing the best as before.

 This continues until some stopping criteria is reached such as no
more than 5 observations in any region. Call this tree T0.

Regression Trees: pruning

 The previously described build up of a regression tree is likely to
overfit the data.

 Requiring each reduction in RSS to exceed a threshold is likely to
prematurely stop a tree.

 Use cost complexity pruning (weakest link pruning).
 Look at subtrees, 𝑇𝑇 ⊂ 𝑇𝑇0, that by collapsing internal nodes. These

subtrees are evaluated with a penalty function.
 Let the parameter α vary and find the subtree, Tα, that minimizes,
𝐶𝐶𝛼𝛼 𝑇𝑇 = ∑𝑚𝑚=1

𝑇𝑇 ∑𝑖𝑖:𝑥𝑥𝑖𝑖∈𝑅𝑅𝑚𝑚 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑅𝑅𝑚𝑚
2 + 𝛼𝛼 𝑇𝑇

at each value of α, where |T| indicates the number of terminal
nodes of the tree T.

Regression Trees: pruning

 To find Tα successively collapse internal nodes starting using the
node that produces the smallest per-node increase in 𝐶𝐶𝛼𝛼 𝑇𝑇 − 𝛼𝛼 𝑇𝑇 .

 This continues until there is only one node.
 This sequence of subtrees will contain Tα.
 When α=0 we just have T0. As α gets larger the best tree will be

smaller.
 Use cross-validation to pick the best α.

Building a Regression Tree
 Algorithm

1. Use recursive binary splitting to grow a large tree on the training data,
stopping only when each terminal node has fewer than some minimum number
of observations.
2. Apply cost complexity pruning to the large tree in order to obtain a sequence
of best subtrees, as a function of α.
3. Use K-fold cross-validation to choose α. That is, divide the training
observations into K folds. For each k= 1,..,K:
(a) Repeat steps 1 and 2 on all but the kth fold of the training data.
(b) Evaluate the mean squared prediction error on the data in the left-out kth
fold, as a function of α.
Average the results for each value of α and pick α to minimize the average error.
(4) Return the subtree from step 2 that corresponds to the chosen value of α.

Unpruned Hitters Tree

In this tree note that the same predictor,
“Years” is used 4 different times.

Regression Tree: CV analysis

The best tree has three terminal nodes.
This happens to be the first tree shown.

Example: Age specific change in physiology
Shahrestani, P., J. Quach, L.D. Mueller and M.R. Rose. 2012.
Paradoxical physiological transitions from aging to late life in
Drosophila. Rejuvenation Research.
DOI: 10.1089/rej.2011.1201

Late-life can be defined to begin at the age which
mortality plateaus. Is there any value to breaking up
physiology into an aging and late-life phase? What if it
allows for a better statistical description of the changes
in physiology.

Example: Age specific change in
physiology

Physiological measurements, 𝑦𝑦𝑡𝑡𝑖𝑖at ages, 𝑡𝑡0, … , 𝑡𝑡𝑛𝑛
Create two regions, R1={all ti<t*} and R2={all ti≥
t*}
Find the t* that minimizes

�
𝑖𝑖: 𝑡𝑡𝑖𝑖∈𝑅𝑅1

𝑦𝑦𝑡𝑡𝑖𝑖 − �𝑦𝑦𝑅𝑅1
2 + �

𝑖𝑖: 𝑡𝑡𝑖𝑖∈𝑅𝑅2
𝑦𝑦𝑡𝑡𝑖𝑖 − �𝑦𝑦𝑅𝑅2

2

where �𝑦𝑦𝑅𝑅𝑗𝑗is the fitted linear equation �̂�𝛽0 + �̂�𝛽1𝑡𝑡𝑖𝑖

Confidence intervals were generated from 1000
bootstrap samples. The samples preserved the total
sample size and the sample size at each age.

Example: Age specific change in physiology
Data:
co.sel co.pops age sex starv co.plat
24 ACO 1 3 F 74.5 pre
25 ACO 1 3 F 42.5 pre
26 ACO 1 3 F 70.5 pre
27 ACO 1 3 F 74.5 pre
28 ACO 1 3 F 66.5 pre

library(boot)
breakday<- function(physio.data,index){

boot.data<- physio.data[index,]
ages.all<- sort(unique(boot.data$age))
ages<- ages.all[3:(length(ages.all)-2)]
rss.age<- NULL
for (i in ages) {
temp.a<- boot.data[boot.data$age<i,]
temp.b<- boot.data[boot.data$age>=i,]
temp.a.lm<- lm(time~age,data=temp.a)
temp.b.lm<- lm(time~age,data=temp.b)
rss.age<- rbind(rss.age,c(sum(temp.a.lm$residuals^2)+ sum(temp.b.lm$residuals^2),i))}

rss.min<- rss.age[which(rss.age[,1]==min(rss.age[,1])),2] #this gives the age of the minimum
return(rss.min)
}

co.m.boot<- boot(physio.data,breakday,R=1000,strata=physio.data[,3])

Example: Age specific change in physiology
> aco.f.boot
STRATIFIED BOOTSTRAP
Call:
boot(data = physio.data, statistic = breakday, R = 1000, strata = physio.data[,

3])
Bootstrap Statistics :

original bias std. error
t1* 14 0.848 2.274658

> boot.ci(aco.f.boot,type="perc")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = aco.f.boot, type = "perc")

Intervals :
Level Percentile
95% (12, 19)
Calculations and Intervals on Original Scale
plot(aco.f.boot)

Classification Trees

 Here the members of a region will be assigned the class
membership of the most commonly occurring class among the
training data.

 Recursive binary splitting is used to grow the tree but the RSS can
not be used as a criteria.

 One possible criteria is the classification error rate, or the fraction
of training observations in a region that do not belong to the most
common class.

 Let �̂�𝑝𝑚𝑚𝑚𝑚 be the proportion of training observations in the mth region
that are from the kth class, then the misclassification error is 1 −
max
𝑚𝑚

(�̂�𝑝𝑚𝑚𝑚𝑚).

 This measure is not sufficiently sensitive for a growing tree.

Classification Trees
 Let �̂�𝑝𝑚𝑚𝑚𝑚 be the proportion of training observations in the mth region

that are from the kth class, then the misclassification error is E =
1 − max

𝑚𝑚
(�̂�𝑝𝑚𝑚𝑚𝑚).

 This measure is not sufficiently sensitive for a growing tree.
 Gini index: 𝐺𝐺 = ∑𝑚𝑚=1𝐾𝐾 �̂�𝑝𝑚𝑚𝑚𝑚(1 − �̂�𝑝𝑚𝑚𝑚𝑚)
 G is small when �̂�𝑝𝑚𝑚𝑚𝑚 is close to 0 or 1, e.g. most observations are

of one type, also called node purity.
 Another option is the cross-entropy: 𝐷𝐷 = −∑𝑚𝑚=1𝐾𝐾 �̂�𝑝𝑚𝑚𝑚𝑚log(�̂�𝑝𝑚𝑚𝑚𝑚)
 The cross-entropy is also close to 0 when �̂�𝑝𝑚𝑚𝑚𝑚 is near 0 or 1.
 In the growing tree the splits which produce the smallest Gini index

or cross entropy will be chosen.
 When pruning the tree use classification error since we typically

seek a tree with the best prediction error.

Classification Trees
Patients with chest pain either have heart disease
(yes) or don’t (no).

Data base of 303 patients and 13 predictors.

Cross-validation results in a tree with six terminal
nodes.

Some of the predictors are qualitative, sex,
chest pain. Where these are used at nodes they
split the data into two groups.

Some splits results in two nodes with the same
prediction. This is due to increase in node purity.
So even though the qualitative outcome is the
same the node purity is different.

In the right RestECG<1 node all 9 observations
are yes. In the left node 7/11 are yes. This split
doesn’t improve classification error but it improves
the Gini index.

Trees vs. Linear Model

If outcome has a linear relationship between
the predictors as in the top panels the linear
model will have a lower classification error.

The bottom panel shows a non-linear relationship
and the tree does a better job of prediction.

Trees are easy to explain and can be presented
graphically.

Bagging
 The process of creating a single tree with recursive binary splitting

and cost complexity pruning results in trees with high variance.
 If we could average in some sense many trees we would expect

the average predictions based on many trees to have lower
variance than the predictions from a single tree.

 One way to accomplish this is the generate many trees from the
same data via bootstrap samples.

 Suppose the bth bootstrap sample results in model predictions
based on the observed vector of predictors, x, 𝑓𝑓∗𝑏𝑏 𝒙𝒙 .

 Then the bagged predictions are,

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 𝒙𝒙 =
1
𝐵𝐵
�
𝑏𝑏=1

𝐵𝐵

𝑓𝑓∗𝑏𝑏 𝒙𝒙

 For classification problems the bagged estimate is the most
common class among the B predictions.

Bagging
 With bagging the trees are grown

deeply but are NOT pruned. Thus,
they have low bias but high
variance. The averaging will
hopefully take care of the
variance.

 The number of bootstrap trees is
generally large in the 100’s or
thousands.

 The number needed can be
determined by examining the
behavior of the test error vs the
number of samples.

Heart data at:
https://archive.ics.uci.edu/ml/datasets.html

Bagging: Out-Of-Bag (OOB) Error Estimates

 Recall from the prior calculation the chance that a database sample
is not included in a bootstrap sample is (1-1/n)n, where n is the
bootstrap sample size.

 This approaches about 1/3. Thus, when constructing the bagged
trees there is always about 1/3 of the observations that are not
used in the tree construction. These observation are called out-of-
bag (OOB) observations.

 These observation can then be used to estimate prediction error.
 The OOB estimates of MSE are valid estimates of the test error.
 See example in the previous slide.

Bagging: variable importance measures

 Although bagging improves prediction accuracy we no longer have
a simple tree that can display the results.

 However, we can get an indication of how important each predictor
is.

 In the case of a regression tree we can determine how much each
predictor has reduced the RSS at each split it was used, over all
bootstrapped trees.

 For a classification tree we can gather the same information for the
decrease in the Gini index.

Bagging: variable importance measures

Heart data and Gini index ranking of predictors.

The most important predictor, Thal, is given
an importance of 100 and all others are
ranked relative to Thal.

Random Forests

 If there are some very strong predictors it is possible that many of
the bootstrap trees will follow at least the same initial structure –
making them highly correlated.

 Averaging the predictions of many highly correlated trees will not
reduce variance as much as desired.

 To break up these correlations each time a split is considered a
random sample of m predictors is chosen and the split must be
based on these m predictors.

 This process should decorrelate the trees and the average
predictions should be less variable.

 As a rule of thumb we can set 𝑚𝑚 = 𝑝𝑝.

Random Forests

Prediction of 14 types of cancer based on
expression arrays of 500 genes. These
500 were chosen from a 4,718 based on
the magnitude of their variance.

Test error gets appreciably better with
𝑚𝑚 = 𝑝𝑝 compared to the other two
choices.

Boosting

 Boosting is a general technique that can be applied to other
methods besides regression and classification trees.

 The boosting process will grow a tree sequentially.
 It also involves a shrinking index which slows the growth of the

tree.
 Performance is enhanced by letting the tree “slowly learn”.
 At each of B steps in the growing process only a few splits are

added to the tree. In fact, often there may be only a single split at
each round of growing.

Boosting

Algorithm: boosting regression trees
1. Set 𝑓𝑓 𝑥𝑥 = 0 and ri=yi for all i in the training set.
2. For b= 1, 2,…, B, repeat:
(a) Fit a tree 𝑓𝑓𝑏𝑏with d splits (d+1 terminal nodes) to the training data (X,r).
(b) Update 𝑓𝑓 by adding in a shrunken version of the new tree:

𝑓𝑓 𝑥𝑥 ← 𝑓𝑓 𝑥𝑥 + 𝜆𝜆𝑓𝑓𝑏𝑏 𝑥𝑥
(c) Update the residuals,

𝑟𝑟𝑖𝑖 ← 𝑟𝑟𝑖𝑖 − 𝜆𝜆𝑓𝑓𝑏𝑏 𝑥𝑥𝑖𝑖
3. Output the boosted model,

𝑓𝑓 𝑥𝑥 = �
𝑏𝑏=1

𝐵𝐵

𝜆𝜆𝑓𝑓𝑏𝑏 𝑥𝑥

Boosting

 Boosting has three tuning parameters.
1. The number of trees B. Boosting can be overfit if B is too large,
although this generally happens slowly. Use cross-validation to
select B.
2. The shrinkage parameter λ. Typical values are 0.01 or 0.001.
Small values of λ will require very large values of B.
3. The number of d split in each tree. Often d=1 will work well.
With d=1 the final model is completely additive. The parameter d is
also referred to as the interactive depth.

Boosting

This is the cancer data set with the
previous random forest results along
with boosting at two different depths.

Boosting: Example, death spiral

 Females close to death
experience a decline in
fecundity at a rate faster than
identically aged females not
about to die.

 To study this we use scaled
fecundity records

Boosting: Example, death spiral

 The scaled records show a large
difference between the flies
that die on the target day up to
about two weeks before death.

 Can we use the scaled fecundity
with individual females to
predict which female is about to
die?

Mueller, L.D., P. Shahrestani, C.L. Rauser, and M.R. Rose.
2016. The death spiral: predicting death in Drosophila cohorts.
Biogerontology DOI 10.1007/s10522-016-9639-7

Boosting: Example, death spiral
We make a database with an equal number of live and dead females, N= 5310.
Of these 1062 are placed in a test database and 4,248 in the training database.
train.5.new<- sample(5310, 4248)
Below is a sample of the database showing days 1-4 before the target day
alive fec5 fec4 fec3 fec2
626 0 -0.3416693 -0.09167779 -0.7241539 -0.4605525
660 0 -2.2190503 -3.20058715 -2.8641337 -2.7655403
727 0 0.1746105 0.66047771 1.0436555 1.1990387
728 0 -0.2008657 0.86105250 0.3923573 0.3692431
1008 0 0.5500867 -2.94986865 -2.8641337 -2.7194405
#Next, we determine the number of trees to use with this 4-day database
library(gbm)#generalized boosted regression modeling
co.5.4.boost<-
gbm(alive~.,data=co.5.4.bdata[train.5.new,],distribution="bernoulli",
interaction.depth=1,n.trees=5000,shrinkage=0.001, cv.folds=10)# Use Bernoulli

for 0/1 response
min(co.5.4.boost$cv.error)#= 1.055217
plot(1:5000,co.5.4.boost$cv.error,type= "l",xlab="Number of Trees",ylab="CV
Error")

Boosting: Example, death spiral

The left graph shows that the CV error is relatively flat at 5,000 trees. The right figure
shows that the smallest CV error is with four days of information prior to the target age.
The code on the previous page was run with a data base of 3 days of fecundity data and 5
days.

Boosting: Example, death spiral

Next, we determine the best value of shrinkage, λ, by examining the CV error with 5,000 trees.
So, the best value is λ=0.01

Boosting: Example, death spiral

Next, we tune the depth of each of the 5,000 trees.
We see the best depth is five splits, much higher than
the books’ recommended 1 or 2.

So, the final analysis will use 5,000 trees,
λ=0.01, and an interactive depth
parameter of 5.

Boosting: Example, death spiral
co.5.4.boost.01.d5<- gbm(alive~.,data=co.5.4.bdata[train.5.new,],
distribution="bernoulli",interaction.depth=5,n.trees=5000,shrinkage=0.01,
cv.folds=10)

>summary(co.5.4.boost.01.d5)
var rel.inf

fec2 fec2 47.35058
fec3 fec3 19.49087
fec4 fec4 17.21937
fec5 fec5 15.93918

fe
c5

fe
c4

fe
c3

fe
c2

Relative influence

0 10 20 30 40

Boosting: Example, death spiral
Finally, we use test data not used in the fitting to predict death and calculate error rates.
#co.5.4.bdata[-train.5.new,] is the original database with the training
data removed -> leaving the test data.
co.5.4.boost.01.d5.pred<- predict(co.5.4.boost.01.d5,
newdata= co.5.4.bdata[-train.5.new,],n.trees=5000,type="response")
temp<- co.5.4.bdata[-train.5.new,1]# temp is just the vector of observed

status value
table(round(co.5.4.boost.01.d5.pred),temp)

0 1
0 421 134
1 114 393

Error rate (dead) = 114/(114+ 421) = 0.2130841 [c.i. 0.1791163 0.2502568]
Error rate (alive) = 134/(134+393)= 0.2542694 [c.i. 0.2176098 0.2937106]
These confidence intervals are from binom.test
> binom.test(114,114+421)

Exact binomial test
data: 114 and 114 + 421
number of successes = 114, number of trials = 535, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.1791163 0.2502568

sample estimates:
probability of success

0.2130841

	Chapter 8: Tree Based Methods
	Regression Trees
	Regression Trees
	Regression Trees
	Regression Trees
	Regression Trees: recursive binary splitting
	Regression Trees: pruning
	Regression Trees: pruning
	Building a Regression Tree
	Unpruned Hitters Tree
	Regression Tree: CV analysis
	Example: Age specific change in physiology
	Example: Age specific change in�physiology
	Example: Age specific change in physiology
	Example: Age specific change in physiology
	Classification Trees
	Classification Trees
	Classification Trees
	Trees vs. Linear Model
	Bagging
	Bagging
	Bagging: Out-Of-Bag (OOB) Error Estimates
	Bagging: variable importance measures
	Bagging: variable importance measures
	Random Forests
	Random Forests
	Boosting
	Boosting
	Boosting
	Boosting
	Boosting: Example, death spiral
	Boosting: Example, death spiral
	Boosting: Example, death spiral
	Boosting: Example, death spiral
	Boosting: Example, death spiral
	Boosting: Example, death spiral
	Boosting: Example, death spiral
	Boosting: Example, death spiral

